ME FILE COR'S OFFICE OF NAVAL RESEARCH Contract NO0014-85-0177 R &n T Code 431a003-4 Technical Report No. 8 Growth and Characterization of Zinc and Cadmium Thiogallate by P. Wu, X-C. He, K. Dwight and A. Wold Prepared for Publication in Materials Research Bulletin September 26, 1988 Brown University Department of Chemistry Providence, RI 02912 Reproduction in whole or in part is permitted for any purpose of the United States Government This document has been approved for public release and sale; its distribution is unlimited 88 9 29 **03**8 | 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT | 21 ABSTRACT SECURITY CLASSIFICATION | |---|--| | ☐ UNCLASSIFIED/UNLIMITED ☐ SAME AS RPT ☐ DTIC USERS | | | 22a. NAVIE OF RESPONSIBLE INDIVIDUAL | 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL | | | I I | ### GROWTH AND CHARACTERIZATION OF ZINC AND CADMIUM THIOGALLATE P. Wu, X-C. He, K. Dwight and A. Wold* Department of Chemistry, Brown University Providence, Rhode Island 02912 *Address all correspondence #### **ABSTRACT** PROTECTION AND ADDRESS OF THE PROTEC TATALAN O KISTELAN OPTAKANA O KISKISTOR O In an attempt to prepare infrared materials which have properties superior to those of the II-VI chalcogenides, members of the system $\mathrm{Zn_{1-x}Cd_xGa_2S_4}(1\ge x\ge 0)$ were prepared and their infrared transmission, hardness and thermal stability were measured. Whereas both $\mathrm{ZnGa_2S_4}$ and $\mathrm{CdGa_2S_4}$ transmitted in the infrared and have reasonable measured values for thermal stability and hardness, there is little improvement achieved by solid solutions. MATERIALS INDEX: Zinc thiogallate, Cadmium thiogallate, Solid solution Introduction The structural and optical properties of the zinc and cadmium thiogallates have been studied by many investigators. These compounds were first synthesized by reacting the binary sulfides (1). Both crystallize with a tetragonal defect chalcopyrite structure (space group I4) (1-3). Because of the symmetry of the crystal structure, CdGa₂S₄ was reported to have optical activity (4). The crystals of these compounds were first grown by Nitsche et al. (5) by chemical vapor transport using iodine as the transport agent. The heat capacities (6, 7) have also been measured and solid solutions of these two compounds have been reported (8). Little has appeared in the literature concerning the IR transmission, hardness and thermal stability of these materials. Chess et al. (9) reported the hardness of $ZnGa_2S_4$; however, the measurements were carried out on hotpressed ceramic discs rather than on single crystals. The only report of the hardness of $CdGa_2S_4$ was made by Vengatesan et al. (10) who reported that the hardness of $CdGa_2S_4$ increased non-linearly with load. It was the purpose of this study to investigate the properties of the system $Zn_{1-x}Cd_xGa_2S_4$ ($1\ge x\ge 0$) for potential application as IR window materials. # Experimental # Sample Preparation Single crystals of $2n_{1-\chi} Cd_\chi Ga_2S_4$, where x = 0, 0.8 and 1, have been grown by chemical vapor transport using iodine as the transport agent. The zinc metal (Gallard and Schlesinger 99.9995%) was prereduced in a Ar/H₂ (85/15) atmosphere at 200°C for 3 hours. Cadmium (Cominco American 99.9999%) was used as received. Sulfur (Gallard and Schlesinger 99.999%) was sublimed prior to use. Gallium (JMC 99.999%) was washed with warm 1M HNO₃ to remove any oxide on the surface. For crystal growth, stoichiometric weights of elements were introduced into silica tubes which were then evacuated to 10^{-5} torr, and 5 mg/cc of iodine were added. The tubes were sealed off and enclosed in a tightly wound Kanthal coil (to even cut temperature gradients) and the whole assembly was placed in a three-zone furnace. The crystal growth temperature program consisted of setting the furnace to back transport mode for one day (growth zone at 1000°C and charge zone at 800°C), equilibrating the furnace to the maximum reaction temperature for three hours, and finally, cooling the central zone at 1°C/hr to the growth temperature. For CdGa_2S_4 , optimum crystal growth occurred when the charge zone was maintained at 880°C and the growth zone at 840°C . For both ZnGa_2S_4 and $\text{Zn}_{0.2}\text{Cd}_{0.8}\text{Ga}_2\text{S}$, the growth was carried out with the charge zone temperature of 950°C and the growth zone temperature of 910°C . The transport process was carried out for ten days. # Characterization X-ray powder diffraction patterns of ground single crystals were obtained using a Philips diffractometer and monochromated high intensity $\text{CuK}\alpha_1$ radiation (λ = 1.5405Å). For qualitative phase identification, patterns were taken with a scan rate of 1° 26/min, while cell parameters were determined from scans taken at 0.25° 20/min. Diffraction patterns were obtained over the range 12° < 20 < 80°. Precise lattice parameters were obtained from these reflections using a least-squares refinement program which corrects for the systematic errors of the diffractometer. TENDERGY () PRESERVED () PROCESSOR () PROCESSOR () PROCESSOR () PRESERVED () PROCESSOR PROCES Optical measurements on polished single-crystal slices were performed at room temperature on a Perkin-Elmer 580 single-beam scanning infrared spectrophotometer. The measurements were performed in the transmission mode over the range 2.5 μm - 25 μm . Transmission through the sample was normalized to the signal obtained in the absence of sample. The microhardness measurements (Knoop indenter) were made on crystals using a Kentron microhardness tester. The results were obtained using a diamond indenter with 25 gram loads. The stability of these compounds toward exidation was determined by heating them in a flowing oxygen stream (60cc/min) and monitoring the change in weight during the heating period. The decomposition temperature was determined as the temperature where the weight of the sample began to change. The results are summarized in Table 1. TABLE I Characterization of the System $2n_{1-x}Cd_xGa_2S_4$ | Sample x= | Phase
Determination
by X-ray | Cell Para | ameters
c | IR Trans-
mission
Range (p m) | Knoop
Hardness | Decom- position Temper- ature (°C) | |-----------|------------------------------------|-----------|--------------|-------------------------------------|-------------------|------------------------------------| | · | | | | Kange (p m) | narchess | (() | | 0 | Tetragonal | 5.296(2) | 10.368(3) | 2.5 - 12 | 367(46) | 520 | | 0.8 | Tetragonal | 5.488(2) | 10.235(3) | 2.5 - 12.5 | 300(16) | 490 | | 1.0 | Tetragonal | 5.551(2) | 10.162(3) | 2.5 - 13 | 305(15) | 490 | IR Spectro of Injude, Dejude, Si Fig. 1. Infrared spectra of cadmium and zinc thiogallate compared with that of an intermediate solid solution. Results and Discussion Single crystals of $\rm En_{1-x}Cd_{-x}Ga_2S_4$ where x = 0, 0.8 and 1 have been grown by chemical vapor transport using iodine as the transport agent. Crystals of both CdGa₂S₄ and $\rm En_{0.2}Cdo_{...}Ga_2S_4$ averaged 5 x 2 x 2 mm in size and wore light yellow in color. $\rm EnGa_2S_4$ had a strong tendency to form nuclei and its crystals had a pyramid shape with edges of about 1 mm. These crystals were colorless. The crystalline structures of these compounds were determined by X-ray powder diffraction analysis. All three of them crystallized with a tetragonal structure. The cell parameters were determined and are given in Table I. The IR transmission data summarized in Table I are plotted in Fig. 1. The absorption band, at about 13 μ m of CdGa₂S₄, shifted to a shorter wavelength when zinc was substituted for cadmium. However, good transmission was obtained for all of these compounds in the range of 2.5 μ m to 12 μ m. Thermal stability of these compounds towards oxidation was determined by thermogravimetric analysis. All of these three compounds start to decompose in oxygen at approximately 500°C, which is close to the stability of zinc sulfide (11). Among these three compounds, the zinc end member is slightly more stable. Microhardness (Knoop hardness number) of these compounds is also given in Table 1. The hardness of these compounds is significantly higher than that of ZnS (11). ZnGa $_2$ S $_4$ is slightly harder than CdGa $_2$ S $_4$. However, substituting 20% cadmium by zinc does not improve the hardness. The measured hardness of ZnGa $_2$ S $_4$ [367(46)] was close to Chess's result 335(30) and 454(29). Our value for CdGa $_2$ S $_4$ is close to the value Vengatesan obtained with a 5g loading. Whereas Vengatesan reported a much higher value with a 25g load, the results in this study did not show any significant difference between a 5g or 25g load. The difference is probably due to the fact that a Knoop indenter was used in this study, whereas Vengatesan used a Vickers indenter. Because this material is brittle, a Knoop indenter would probably give more reliable results. # Conclusions Both ${\rm ZnGa_2S_4}$ and ${\rm CdGa_2S_4}$ transmit in the infrared up to 12 and 13 μm respectively. However, the cadmium thiogallate decomposes at a lower temperature than the zinc thiogallate. Attempts to improve the hardness of the thiogallate by solid solution with zinc were unsuccessful. It was apparent that little improvement in the measured properties was obtained by solid solution. # Acknowledgments This research was supported in part by the Office of Naval Research and also by the Eastman Kodak Company, Rochester, NY. #### References - 1. H. Hahn, G. Frank, W. Klinglev, A. D. Strorger and G. Strorger, Z. Anorg. Chem., 279, 241 (1955). - 2. S. T. Kshirsagar and A.P.B. Sinha, J. Mater. Sci., 12, 144 (1977). - 3. H. Haeuseler, J. Solid State Chem., 26, 367 (1978). - 4. M. V. Hobden, Acta Cryst., A25, 633 (1969). THE PRODUCTION OF PRODUCTI - 5. R. Nitsche, H. U. Bolsterli and M. Lichtensteiger, Phys. Chem. Solids, 21, 199 (1961). - K. K. Mamedov, M. M. Aliev, I. G. Derimov and R. Kh. Nani, <u>Phys. Stat. Sol. (A)</u> K149, (1972). - 7. R. K. Vellev and M. A. Aldzhanov, Phys. Stat. Sol. (A) 91, K23 (1985). - 8. P. P. Lottici and C. Razzetti, J. Molecular Structure, 115, 133 (1984). - 9. D. L. Chess, C. A. Chess and W. B. White, <u>Mat. Res. Bull.</u>, <u>19</u>, 1551 (1984). - 10. B. Vengatesan, N. Kanniah and P. Ramasamy, J. Mat. Sci. Lett. 5, 987 (1986). - 11. P. Wu, K. Dwight, A. Wold. To be published. SECTION CONTRACTOR CON | | <u> </u> | | | DISTRIBUTION LIS | | |---|--|---|--|---|---| | Dr. John C. Pulver Eastman Kodak Co. Dept. 144 Hawkeye Plant Apparatus Div. 901 Elgrove Road | Office of Naval Research
800 N. Quincy Street
Code 1216 (R. Jones)
Arlingcon, VA 22277 | Army Mat. & Mechan. Research
Center
Watertown, MA 02172 | Dr. Mufit Akinc
Mat. Sci. & Eng. Dept.
Iowa State University
Ames, IA 50011 | Strin Lisa C. Klein Ceramics Research Ctr. Ma Coll. of Eng./Rurgers Univ. Box 909, Piscataway, NJ 08854 Un | out. b. out. p. out. p. out. p. Dr. Will B. White Materials Research Laboratory Pennsylvania State University University Park, PA 16802 | | Dr. W. Rhodes
GTE Laboratories
40 Sylvan Road
Waltham, NA 02254 | Naval Air Development Center
Code 606 (T. Schafer)
Warminster, PA 18974 | Attn: R. N. Katz Air Force Off. of Sci. Res./NE Bldg. 410, Bolling AFB Nashington, DC 20332 attn: Elec. & Mats. Sci. Dir. | Dr. Hal E. Bennett
Code 38101
Naval Neapons Center
China Lake, CA 93555-60001 | Dr. Peter Melling
Ceramics and Glass Technology
Battelle Columbus Laboratories
Columbus, OH 43201 | opstril coronis (f) | | Mr. D. Roy
Coors Porcelain Co.
Golden, CO 80401 | Naval Surface Weapons Center
10901 New Hampshire Avenue
White Oak Laboratory
Code X22 (W. Messick)
Silver Spring, MD 20910 | Office of Naval Technology
800 N. Quincy Street
Arlington, VA 22217
Attn: Code 0712 | Dr. Stan Block
Structural Chemistry
National Bureau of Standards
Gaithersburg, MD 20899 | Dr. Russ Messier
Pennsylvana State University
Materials Research Laboratory
University Park, PA 16802 | Dr. W. Adler
General Research Inc.
P.O. Box 6770
Santa Barbara, CA 93160 | | Dr. J. Savage
Royal Signals & Radar Establish.
St. Andresvs Road
Great Malvern, WORCS, WR14 3PS
England | Air Force Materials Laboratory
Mright-Patterson AFB
Dayton, OH 45433
Attn. N. Tallan | Office of Maval Technology
800 N. Quincy St.
Arlington, VA 22217
Attn: Code 0725 | Dr. Jeremy K. Burdett
Chemistry Department
University of Chicago
5801 Ellis Avenue
Chicago, IL 60637 | Dr. Gary Messing
Materials Research Department
Pennsylvania State University
University Park, PA 16802 | Dr. C. Blackmon
Code G23
Naval Surface Meapons Ctr.
Dahigren, VA 22448 | | Dr. I. G. Talmy
Code R31
Naval Surface Meapons Ctr
White Oak Laboratory
Silver Spring, MD 20903 | Naval Air Systems Command
1411 Jeff Davis Highway
Code 931A (L. Sloter)
Arlington, VA 22202 | | Dr. Bruce Dunn
Mat. Sci. 7 Eng. Dept.
University of California/LA
Los Angeles, CA 90024 | Dr. Peter E. D. Morgan
Rockwell Int'' Sci. Center
1049 Camino Dos Rios, Box 1085
Thousand Oaks, CA 91360 | Dr. J. A. Cox
Honeywell Systems & Research
Dept. WN 65-2600
3660 Technology Drive
Minneapolis, MN 55418 | | Yr. M. Tropf
Applied Physics Lab
Johns Hopkins Road
Laurel, MD 20810 | Defense Metals & Ceramic Info.
Battelle Memorial institute
SOS King Avenue
Columbus, OH 43201 | | Dr. George Gardopee
Optical Grp. Perkin-Elmer Co.
100 Nooster Heights Road
Danbury, CT 06810 | Dr. Carlo Pantano
Materials Science Laboratory
Pennsylvania State University
University Park, PA 16802 | Dr. P. Klocek
Texas Instruments
P.O. Box 660246
Dallas, TX 75266 | | Technical + summy | Naval Weapons Center
Code 3854 (Schwartz)
China Lake, CA 93555 | | Dr. Greg Geoffroy
Chemistry Department
Pennsylvania State University
University Park, PA 16802 | Dr. Rishi Raj
Mat. Sci. & Eng. Dept.
Cornell University
Ithaca, NY 14853 | Dr. D. N. Lewis
Code 6360
Naval Research Lab
Nashington, DC 20375 | | befense Documentation Center Jameron Station 1 | Defense Advanced Research Proj.
Materials Sci. Office
1400 Wilson Blvd. Attn: B. Wilcox
Arlington, VA 22209 | | Dr. Alan Harker
Rockwell Int'l Science Center
1049 Camino Dos Rios, Box 1085
Thousand Oaks, CA 91360 | Dr. Rustrum Roy
Mat. Science Laboratory
Pennsylvania State University
University Park, PA 16802 | Dr. S. Musikant
General Electric Co.
P.O. Box 8555
Philadelphia, PA 19101 | | office of Maval Research Sode 1151 OO M. Quincy St. | Army Research Office
P.O. Box 12211
Triangle Park, NC 27709
Attn: Metal. & Ceramics Prg. | | Dr. Dan C. Harris
Code 3854
Naval Weapons Center
China Lake, CA 93555-6001 | Dr. Angelica Stacy
Chemistry Department
University of California
Berkeley, CA 94720 | Dr. Dale Perry
U.S. Army Missile Cmd.
Redstone Arsenal
Huntsville, AL 35807 | | : Att : (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | Army Research Office
P.O. Box 12211
Triangle Park, NC 27709
Attn: Chemistry Prog. | | Dr. Randolph A. Heinecke
Std. Tele. Labs, Ltd.
London Road, Harlow
Essex Cx17 9MA | Dr. Randy Tustison
Raykheon Company, Research Div.
131 Spring St.
Lexington, MA 02173 | Dr. W. Pittman
AySI-RD-AS-PW
Redstone Arsenal
Huntsville, AL 35898 | | ffice of Naval Research
ode 1113 (H. Guard)
00 N. Quincy St.
rlington, VA 22217 | Scientific Advisor
Commandant of the Marine Corps
Mashington DC 20380
Attn: Code AX | | Dr. Curt E. Johnson
Code 3854
Naval Weapons Center
China Lake, CA 93555-6001 | Dr. Terrell A. Vanderah
Code 3854
Naval Meapons Center
China Lake, CA 93555-6001 | Mr. C. J. Pruszynski Advanced Sensors General Dynamics, Box 748 Fort Worth, TX 76101 |